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We have examined the correlation of the Randi6 connectivity index with the 
Hosoya topological index, the Wiener number and the molecular identification number 
in search of the optimal functional relation between those indices and the boiling points 
of alkanes. We found that some functional relations used empirically in the literature 
can be understood using the known fact that the Randi6 connectivity index is the most 
successful single descriptor of molecular structure. 

1. Introduction 

It is well known that molecular topology determines a large number of molecular 
properties, including not only those depending on molecular size and shape such 
as boiling points, molecular volumes, solubilities, refractive indices, etc., but also 
the quantum mechanical characteristics of molecules, such as energy levels, electronic 
populations, etc. which depend, essentially, on the connectivity of the atoms [1]. 

Thus, it would be of great interest to have some quantitative measure reflecting 
the essential features of a given topological structure. Such measures are usually 
called topological indices or, more exactly, graph theoretical invariants, since these 
numbers are the same for isomorphic graphs [2]. These indices in some way reflect 
not only the size and shape of a molecule but also their connectivity, i.e. the way 
their atoms are linked. 

Many topological indices have been developed through the years and correlated 
with many physicochemical properties [2-5]. Recently, Randi6 et al. [6] made a 
critical study of the correlation of four indices: the Wiener number (W), the Hosoya 
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topological index (Z), the Randi6 connectivity index (Z), and the molecular identification 
number (ID) with the boiling points of alkanes. They found different functional 
forms for the correlations, which led to significant improvements in the correlation 
coefficients compared to those using only the plain topological indices. However, 
the search for the best functional form was somewhat empirical. On the other hand, 
their study shows that there exist correlations among the different topological indices, 
although no mathematical relations were established. It is the purpose of  this paper 
to establish and test approximate functional relations among the four indices previously 
mentioned, and to explain why the functional forms proposed by Randi~ et al. work, 
taking as a basis the correlation between the boiling points of alkanes and the 
Randi6 connectivity index. 

This paper is organized as follows. In section 2, we review the definitions 
of the four indices mentioned above and prove their invariance. In section 3, we 
establish approximate relations between the Randi~ connectivity index and the Wiener 
number, the Hosoya topological index, and the molecular identification index to test 
the expressions obtained with actual correlations. Also, in that section, we correlate 
the boiling points of the lower alkanes with the functional relations encountered. 
Section 4 is a summary of our results. 

2. Overview of topological indices 

We shall assume that the reader has some familiarity with the terminology 
of graph theory; Harary's book is a good reference [7]. Also, we suppose that all 
molecular species can be represented by means of an appropriate chemical graph. 

An invariant of a graph G is any number associated with G which has the 
same value for any graph isomorphic to G. In a connected graph G, the distance 
d( i , j )  between two vertices i and j is the length of the shortest path joining them. 

In what follows, we review the Wiener number, the Hosoya topological 
index, the Randi6 connectivity index, and the molecular identification number and 
prove their invariance. 

2.1. WIENER NUMBER 

The Wiener number was introduced in 1947 by Wiener [8] and is based on 
the graph concept of distance. The Wiener number is equal to one-half the sum of  
the elements of the distance matrix of graph G [9], i.e. 

1 ~.~ dij, (1) W = 2  
ij 

where the dij's are the coefficients of the distance matrix D = (dij). 
The Wiener number of any graph G is an invariant. In fact, if G'  is a graph 

isomorphic to G, then f : G  --~ G" is a bijection which preserves adjacency. Now, if 
D = (dij) and D" = (d'kt) are the distance matrices of G and G', respectively, we have 
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dij = mind(i , j )  = d~(i)/U), that is, W --- W', where W' is the Wiener number of the 
graph G'. 

For normal alkanes, i.e. unbranched alkanes, we have the following formula: 

W G = ~ (n 3 - n), (2) 

where n is the number of vertices. 
The Wiener number is an index which gives a measure of the branching of 

a graph [10]. Thus, the Wiener number of a branched molecule is less than that of  
a linear or less compact molecule. Platt [11] has suggested that the cubic root of 
the Wiener number is a measure of the mean distance among carbon atoms in a 
molecule and is, approximately, a measure of the probability that one part of  a 
molecule will be attracted by another by van der Waals forces. Since its introduction, 
it has been found that this index correlates very well with properties such as boiling 
point, viscosity, surface tension and refractive index. On the other hand, it has been 
found that, in general, a system is at its minimum of energy when its Wiener 
number is a minimum [12]. This idea has been applied to model several processes 
in which foreign atoms fill interstitial areas in a crystal. By calculating the three- 
dimensional Wiener number of each possible configuration of  crystal-lattice atoms 
and foreign atoms, and using the above-mentioned idea, it is possible to determine 
the configurations most likely to be realized. This last finding could be useful in 
the search for the most probable geometry of clusters. 

2.2. THE RANDI(~ CONNECTIVITY INDEX 

The Randi6 connectivity index Z depends on the graph concept of degree [ 13]. 
It is defined by 

Z = YJ (1/mn) 1/2. (3) 

This summation is over all edges in the graph G and it includes one term for each 
edge in G. The variables m and n are the degrees of the adjacent points joined by 
each edge. Since the degree of any graph is an invariant, Z is also an invariant. 

Let G be the graph of a normal alkane; then 

X4+n' = ~ q" (1 + n') / 2, (4) 

where 4 + n '  is the number of vertices and n" = -1 ,  0, 1, 2 . . . . .  It has been found 
that the Randi6 connectivity index is the one which presents the best correlation 
with the physicochemical properties of many substances. The Randi6 connectivity 
index is also known as the path-one connectivity index. This comes from the fact 
that Z is calculated summing over all paths of length one in the structural graph. 
By a natural extension, it is possible to consider additional indices corresponding 
to paths of lengths greater than one [14]. 
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2.3. THE HOSOYA TOPOLOGICAL INDEX 

The Hosoya topological index Z of a graph G is based on the count of  non- 
adjacent edges of G and is defined as [9] 

m 

z = p(G,  (5) 
k=O 

where p(G, k) represents the number of different ways of selecting k non-adjacent 
edges in graph G, and the summation extends over all the m edges of the graph. 
By definition, p(G, O) = 1 and p(G, l) is equal to the number of edges. 

Since every isomorphism of a graph preserves both adjacency and non-adjacency, 
we conclude that the Hosoya topological index is an invariant of  G. 

The Fibonacci numbers are integers Fn defined by 

F n = F . _ I + F . _  2, n > 2 ;  F o = F I = I .  

They have a simple combinatorial meaning: F.+I  is the number of subsets of  
{1 . . . . .  n} such that no two elements are adjacent [15]. 

Hence, for normal alkanes, the Hosoya topological index is given by 

Z = F,,+, = (l / -,,/5 ) [((l + -~)/2) n+'- ((l -",/5)/2)"+1]. (6) 

2.4. MOLECULAR IDENTIFICATION INDEX 

The molecular identification index [16] of a graph G is defined as the sum 
of weighted path numbers. Each path of length zero is given a weight of unity, and 
for paths of length greater than zero the weight is equal to the product of 
(1/mn) u2 terms, one term for each edge included in the path, where m and n are 
the degrees of the vertices joined by the edge. In mathematical terms 

ID = ~ 0)oi + I/2 O) ij  , (7) 
i ij 

where o90i is the path-weight for all paths of length zero, and o)ij is the path-weight 
corresponding to all paths of length greater than zero. 

Since the Randid connectivity index and the number of vertices of G are 
invariants, then the molecular identification index is also an invariant. 

It is easy to see that, for normal alkanes, 

n-3 
ID = n+.,]2 ~_~(1/2i)+s, 

i=O 

(8) 

where n > 3 is the number of vertices and 



D.A. Morales, O. Araujo, Graph theoretical invariants and properties 99 

n-3 
s = 1/2 "-2 + ~_~(i/2"-i-2). (9) 

i-O 

Using the expression for the geometric progression, the preceding equation can also 
be written as 

I D =  2(22-n + 2 i-n + n - 2 )  + (2 -23-n)~c2. (lO) 

3. Relations between indices 

AS has been pointed out previously, the Randi6 connectivity index is the most 
successful single descriptor of molecular properties; however, if we plot the correlation 
between the experimental boiling points of 21 alkanes, tabulated in table 1, and the 
Randi6 connectivity index, the linear correlation does not adequately fit the experimental 
data owing to the curvature of the plot. However, a fitting of the data to a second- 
degree polynomial in Z improves the correlation, as shown by Randi6 et al. [6]. 

From the preceding analysis, it is obvious that a search for the best correlation 
of physicochemical properties with topological indices is in order. 

In this section, we derive and test approximate expressions between the 
Randi6 connectivity index and the Wiener number, the Hosoya topological index, 
and the molecular identification index. The relations obtained are derived from 
exact formulas for linear alkanes. However, since the change in a topological index 
with branching is small for small branching, we suppose that the functional relation 
obtained for linear alkanes is also valid for branched ones except that we allow the 
coefficients to vary. We then make a correlation analysis based on the functional 
relations derived and the actual values for the topological indices of alkanes C2 
through C7. 

3.1. RELATION BETWEEN THE RANDI(~ CONNEL-'HV1TY INDEX AND THE WIENER NUMBER 

From eqs. (2) and (4) above, for normal alkanes we can derive the following 
approximate relation between Z and W: 

Z = AR + BR(6W) 1/3 + CR(6W) -1/3 + . . . .  (11) 

where A R = -4~-  3/2 -_- -0.09, B R = 1/2, C R = 1/6 = 0.17 . . . . .  This equation was 
derived by approximately solving the resulting cubic equation in terms of W and 
then substituting the result in eq. (4). In table 1, we reproduce the values of the four 
topological indices considered here for the alkanes C2-C 7. A linear regression 
analysis of  the values of Z versus (6W) 1/3, not including ethane, leads to the following 
coefficients for the correlation: AR = -0.12, and BR = 0.50 with a correlation coefficient 
(c.c.) of  0.9906 and a standard deviation (s.d.) of 0.0817. If we include ethane, then 
the results are AR = -0.00394, BR = 0.483 with a c.c. of 0.9920 and a s.d. of 0.0878. 
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Table 1 

Experimental boiling points of lower alkanes and values of the Randi6 connectivity index Z, the 
Wiener number W, the Hosoya topological index Z, and the molecular identification index ID. 

Compound BP (obsd.) Randi6 index Wiener no. Hosoya index ID 
°C (Z) (W) (Z) 

ethane - 88.63 1.000 1 2 3.0000 

propane - 42.07 1.414 4 3 4.9142 
2-methylpropane - 11.73 1.732 9 4 6.7321 
n-butane - 0.50 1.914 10 5 6.8713 
2,2-dimethylpropane 9.50 2.000 16 5 8.5000 
2-methylbutane 27.85 2.270 18 7 8.6968 

n-pentane 36.07 2.414 20 8 8.8499 
2,2-dimethylbutane 49.74 2.561 28 9 10.4660 
2,3-dirnethylbutane 57.99 2.643 29 10 10.5236 
2-methylpentane 60.27 2.770 32 11 10.6792 

3 -methylpentane 63.28 2.808 31 12 10.6759 
n-hexane 68.74 2.914 35 13 10.8391 
2,2-dimethylpentane 79.20 3.061 46 14 12.4490 
2,4-dimethylpentane 80.50 3.126 48 " 15 12.5092 

2,2,3 -trimethylbutane 80.88 2.943 42 13 12.2931 
3,3-dimethylpentane 86.03 3.121 44 16 12.4427 
2,3-dimethylpentane 89.78 3.181 46 17 12.5052 
2-methylhexane 90.05 3.270 52 18 12.6704 
3-methylhexane 91.85 3.308 50 19 12.6600 
3 -ethylpentane 93.48 3.346 48 20 12.6692 

n-heptane 98.42 3.414 56 21 12.8338 

Since in some of the situations (like the Randi6 connectivity index), ethane is a 
special case in that it is a single molecule that involves a single parameter not 
appearing in other molecules and hence can be adjusted and influences the statistics 
without actually reflecting improvement in the description of other molecules. Thus, 
from this result we can conclude that since the Randi6 connectivity index presents 
a good correlation with the boiling points of the 21 alkanes listed in table 1 (c.c. 
of 0.9914 and a s.d. of 6.746), then a good correlation will be shown between the 
boiling points and the cubic root of  the Wiener number. This is indeed what we 
find; the correlation obtained is given by 

BP = -146.2 + 64.87W 1/3 

with a c.c. of 0.9951 and a s.d. of 5.082 (data plotted in fig. 1). This represents an 
impressive improvement over the correlation between the boiling points and the 
first power of the Wiener number, which gives a c.c. of  0.9432 and a s.d. of 17.09. 
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Fig. 1. Correlation between the boiling points of the 
C2-C 7 alkanes and the third power of the Wiener number. 

Randid et al. [6] tested other powers of  W in the correlation with the boiling 
points of  the alkanes listed in table 1, and found that a still better correlation will 
be obtained using W TM. In a correlation study of  boiling points and W u3, we found 
that a functional dependence of the form 

BP = a + b W  u3 + c / W  1/3 (12) 

suggested by expression (11) with a = - 1.118 x 102, b = 5.774 x 10, and c = - 3.503 x 10 
gives a c.c. of  0.9962 and a s.d. of  4.598, which are close to those obtained from 
the correlation between boiling points and W TM, i.e. 0.9963 and 4.417 [6]. 

3.2. RELA~ON BETWEEN THE RANDIC CONNECTIVITY AND THE HOSOYA TOPOLOGICAL 
INDEX 

In order to derive a relation between the Randid connectivity index and the 
Hosoya topological index, we will approximate expression (6) by simply neglecting 
the term [(1--~/5)/2] n÷l in (6), and combining the resulting equation with eq. (4). 
Hence, we obtain the following approximate expression which relates Z and Z for 
linear alkanes: 

Z = A H + B H l n Z ,  

where 

AH = ~t~ _ 2 - In 5/(4 In a )  = 0.250, 

B n = ½ In ct = 1.039 

and tz is the golden ratio (1 + ~j5)/2. 

(13) 



Using the values for Z and Z from table 1, a correlation analysis of  Z versus 
In Z, not including ethane, produces the following result: A H = 0.300, BH = 1.024 
with a c.c. of  0.9988 and a s.d. of  0.0286. If we include the data for ethane, we 
obtain AH = 0.2956, B n = 1.026 with a c.c. of  0.9992 and a s.d. of  0.0279. This 
correlation also explains previous correlations of  boiling points o f  alkanes with the 
logarithm of  Z. For the 21 alkanes listed in table 1, we find 

BP = -121 .95  + 74.99 l n Z  

F.- 
Z 

13_ 

Z 
J 

Q3 

with a c.c. of 0.9902 and a s.d. of  7.185 (fig. 2), a large improvement over the 
correlation of  boiling points with Z (c.c. = 0.9128, s.d. = 21.01). 
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Fig. 2. Correlation between boiling points of the C2-C 7 alkanes 
and the logarithm of the Hosoya topological index Z. 

Randid et al. [6] tested, empirically, several functional relations of  powers Z 
and found good correlations, especially for negative powers. This finding can be 
explained using the preceding discussion. Since Z x can be written in a power  series 
of  In Z as 

Z x = exp(x In Z) = 1 + x in Z + I x 2 In2 Z + . . . .  (14) 

we see that Z x is proportional to In Z and that a correlation o f Z  x with boiling points, 
for small x, will give good correlation coefficients. Randid et al. find the best fit 
for x = - 1/3 (using only fractional powers). The nonlinear terms in expansion (14) 
above can be thought of  as coming from the nonlinear terms neglected in eq. (6) 
when the approximate formula (13) was obtained. Expansion (14) also suggests that 
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a still better correlation can be obtained between boiling points and the Hosoya 
topological index by the functional expression 

BP =aH + bH In Z + CH In2Z, (15) 

which, in turn, can be thought of  as coming from a nonlinear relationship between 
the Randi6 connectivity index and the Hosoya topological index, of  the form 

Z = A" + B" In Z + C'  ln2Z. (16) 

Indeed, a fitting of  the Randi6 connectivity index and the Hosoya topological index 
to the functional relation (16) produces the following result: 

Z = 0.2755 + 1.049 In Z -  5.83 x 10 -3 ln2Z 

with a c.c. of  0.9992 and a s.d. of  0.0286. 
Fitting the data given in table 1 to the functional relation given by eq. (15) 

gives the following coefficients: aH= -169.92,  bH = 130.32, and CH = --13.93, with 
a c.c. of  0.9976 and a s.d. of  3.657 (fig. 2). These results are very close to those 
obtained using Z -1/3 (c.c. = 0.9976, s.d. = 3.547). 

Also, since AH < BH In Z in eq. (13), we can rewrite that equation as 

Z = B H l n Z [ 1  +AH/BHlnZ]  = BH In Z. (17) 

Randi6 found that the best correlation is obtained using 21/3; then we can 
write eq. (17) as 

Z 113 = B~ 3 (In Z) 1/3. (18) 

Thus, a correlation of boiling points and (In Z) 1/3 must also give a better fit than 
the correlation using In Z. In fact, a regression analysis shows that, for the 21 
alkanes listed in table 1, 

BP = -387.56 + 335.56 (In Z) 1/3 

with a c.c. of  0.9976 and a s.d. of  3.548, which are close to those obtained using 
Z -1/3 (fig. 3). 

3.3. RELATION BETWEEN THE RANDIC CONNECTIVITY INDEX AND THE MOLECULAR 
IDENTIFICATION INDEX 

If we combine eqs.. (4) and (10), we find a relation between the Randi6 
connectivity index and the molecular identification index given by 

ID = aiD exp(-biDZ) + cIDZ + diD, (19) 
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Fig. 3. Correlation between the boiling points of the C2-C 7 alkalies and 
the one-third power of the logarithm of the Hosoya topological index Z. 

where 

a m = 2242(.3 --~f2), b ~  = ln4,  CiD = 4, dn~ = 2(1-~,~)--__ -0.8284. 

Since the first term in eq. (19) decays very rapidly with Z, we can see that the 
relation between ID and Z is approximately linear. A linear regression analysis, 
using the data in table 1, and not including ethane, produces the following values: 
qD = 4.004 and did = - 0 . 3 1 4 9  with a c.c. of  0.9828 and a s.d. of  0.450. If  we 
include ethane, then we obtain CID=4.13 and diD= -0 .667 ,  with a correlation 
coefficient of  0.9876 and a s.d. of 0.457. Using ID directly in a correlation analysis 
with boiling points gives 

BP = -129.685 + 17.514 ID 

with a c.c. of 0.9920 and a s.d. of  6.496 (fig. 4). A slight improvement  on the 
correlation is found using the fact that Z u3 gives the best index. In this way, from 
eq. (19) we find that ID 1/3 is proportional to Z u3. Thus, a regression analysis of 
boiling points and ID u3 gives 

BP = -396.471 + 207.641 ID I/3 

with a c.c. of 0.9922 and a s.d. of 6.406 (fig. 5). Randi~ et al. find that the best 
correlation is obtained using ID ~/2. The deviation in the powers of  1/3 and 1/2 is, 
presumably,  due to ignoring the exponential term in eq. (19). 



D.A. Morales, O. Araujo, Graph theoretical invariants and properties 105 

F-- 
Z 
5 
O_ 

(.9 
Z 
i J  

5 
O3 

100-  

70-  

4-0. 

1 0  

- 2 0  

- 5 0  - 

- 8 0  - 

- 1 1 0  
2 

o 

I I I 
5 8 11 

ID 

Fig. 4 .  Correlation between the boiling points of the C2-C 7 alkanes 
and the molecular identification index ID. 

1 O 0  o 

70 ,:, o 

4-0 

10 

- 2 0  

- 5 0  

- 8 0  

- 1 1 0  I r l 
1 .400  1 .600  1 .800  2 . 0 0 0  2 . 2 0 0  2.4-00 

1/3 
ID 

Fig. 5. Correlation between the boiling points of the C2-C 7 alkanes 
and the one-third power of the molecular identification index ID. 

4. Conclusions 

In this paper, we have made an anlysis of the correlations which exist among 
four important topological indices: the Randid connectivity index, the Wiener number, 
the Hosoya topological index, and the molecular identification index. We have 
established approximate relations which have been tested. The functional relations 
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have then been used in establishing correlations with the boiling points of  alkanes. 
Since it was found that the Randi6 connectivity index and its one-third power gives 
the best correlation with boiling points [6], we have used the functional relations 
among the Randi6 connectivity index and the three other indices mentioned above 
to find the best functional form for the correlation between those indices and the 
boiling points of alkanes, explaining, in this way, some empirical findings of 
Randi~ et al. [6]. 

The analysis of this paper also corroborates a fact pointed out by Randi6: 
owing to the correlation among indices, it is going to be more difficult than anticipated 
to arrive at new invariants that have novel difference structural bases and cannot 
be simply (if not trivially) related to those already existing [6]. 

Finally, we want to point out that recently the interest in topological indices 
has shifted toward to use of two or more descriptors in structure-property 
relationships [17]. In this sense, correlations based on a single descriptor may give 
some insights when one designs multivariate regressions. For example, fig. 4 shows 
that isomeric variations (represented by points with a slope visibly larger than the 
slope of the overall linear regression) could be improved with a descriptor which 
displays the opposite behavior. In fact, a correlation of the boiling points of C2-C7 
with ID as the first descriptor and 1/ID as the second shows an improvement of the 
correlation coefficient (0.9944) and a reduction of the standard deviation (5.4319) 
compared to those values obtained with the use of ID as the sole descriptor. 
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